**Title:**Â A Computational Introduction to Number Theory and Algebra

**Author:** Victor Shoup

**License:** CC 2.0 , Cambridge University Press

**Why you should read this book?**

From the book.

Number theoryÂ andÂ algebraÂ play an increasingly significant role in computing and communications, as evidenced by the striking applications of these subjects to such fields asÂ cryptographyÂ andÂ coding theory.

The goal of this book is to provide an introduction to number theory and algebra, with an emphasis on algorithms and applications, that would be accessible to a broad audience.

In particular, this book should be accessible to typical students in computer science or mathematics who have a some amount of general mathematical experience, but without presuming too much specific mathematical knowledge.

Inside this book, all of the mathematics required beyond basic calculus is developed ?from scratch.? Moreover, the book generally alternates between ?theory? and ?applications?: one or two chapters on a particular set of purely mathematical concepts are followed by one or two chapters on algorithms and applications â€” the mathematics provides the theoretical underpinnings for the applications, while the applications both motivate and illustrate the mathematics.

Of course, this dichotomy between theory and applications is not perfectly maintained: the chapters that focus mainly on applications include the development of some of the mathematics that is specific to a particular application, and very occasionally, some of the chapters that focus mainly on mathematics include a discussion of related algorithmic ideas as well.

The mathematical material covered includes the basics of number theory (including unique factorization, congruences, the distribution of primes, and quadratic reciprocity) andÂ abstract algebraÂ (including groups, rings, fields, and vector spaces).

It also includes an introduction to discreteÂ probability theoryÂ â€” this material is needed to properly treat the topics ofÂ probabilistic algorithmsÂ and cryptographic applications.

The treatment of all these topics is more or less standard, except that the text only deals with commutative structures (i.e.,Â abelian groupsÂ andÂ commutative ringsÂ with unity) â€” this is all that is really needed for the purposes of this text, and the theory of these structures is much simpler and more transparent than that of more general, non-commutative structures.

**Must Read: Interesting Tech Books**

**Prerequisites:**

The mathematical prerequisites are minimal: no particular mathematical concepts beyond what is taught in a typical undergraduate calculus sequence are assumed.

The computer science prerequisites are also quite minimal: it is assumed that the reader is proficient in programming, and has had some exposure to the analysis of algorithms, essentially at the level of an undergraduate course on algorithms and data structures.